Activation of Dichloromethane by Basic Rhodium($_1$) and Iridium($_1$) Phosphine Complexes. Synthesis and Structures of *fac*-[Rh(PMe₃)₃Cl₂(CH₂PMe₃)]Cl·CH₂Cl₂ and *trans*-[Rh(Me₂PCH₂CH₂PMe₂)₂Cl(CH₂Cl)]Cl

Todd B. Marder,*† William C. Fultz, Joseph C. Calabrese, Richard L. Harlow, and David Milstein

Central Research & Development Department, E. I. du Pont de Nemours & Company, Experimental Station, Wilmington, DE 19898, U.S.A.

Sixteen-electron Rh^1 complexes of basic phosphines react with CH_2CI_2 yielding either $RhCH_2CI$ or $RhCH_2PMe_3$ complexes; an example of each has been structurally characterized.

There has been considerable recent interest^{1,2} in the activation of dihalogenomethanes by late transition metal complexes as a means of generating the synthetically useful MCH₂X unit avoiding the use of α -halogenoethers. In certain cases,³ dinuclear μ -CH₂ complexes result directly from CH₂X₂ activation. Elegant studies by Werner *et al.*¹ on the (η -C₅H₅)Rh(L)₂ half-sandwich systems demonstrated the possi-

bility of ligand migrations of the form given in equation (1) (L = tertiary phosphine), as well as attack on the RhCH₂X group by external nucleophiles (*e.g.* pyridine, methoxide). It is interesting to note that most of these reactions have involved CH₂I₂, CH₂Br₂, or CH₂ICl, there being few examples of CH₂Cl₂ activation.^{1b,2b,3c} We report herein that square-planar rhodium(1) complexes incorporating basic phosphine ligands react rapidly with CH₂Cl₂ yielding either chloromethyl Rh^{III} or Rh^{III}CH₂PR₃ ylide complexes in high yields.

⁺ *Present Address:* The Guelph-Waterloo Centre for Graduate Work in Chemistry, Waterloo Campus, University of Waterloo, Department of Chemistry, Waterloo, Ontario, Canada, N2L 3G1.

Interest in our laboratory in the stoicheiometric⁴ and catalytic⁵ reactions of the cationic $[L_nM]Cl$ complexes (1)⁶ and (**2a,b**)^{7,4b} and the neutral [(PMe₃)₃RhCl] (3)⁶ complexes led us to explore their stability in the useful solvent CH₂Cl₂. Complexes (1) and (3) are reportedly unstable in chlorinated solvents CH₂Cl₂, CHCl₃, and CCl₄.⁶[‡] We also find that (1)

$$[L_nM]Cl$$
(1) L = PMe₃, M = Rh, n = 4
(2a) L = dmpe, M = Rh, n = 2
(2b) L = dmpe, M = Ir, n = 2

$$dmpe = Me_2PCH_2CH_2PMe_2$$

$$[(PMe_3)_3RhCl] (3)$$

 $fac-[Rh(PMe_3)_3Cl_2(CR_2PMe_3)]Cl \cdot CR_2Cl_2$ (4a) R = H
(4b) R = D

trans-[(dmpe)₂MCl(CH₂Cl)]Cl·CH₂Cl₂

(5a) M = Rh(5b) M = Ir

mer, cis-[(PMe₃)₃RhCl₂(CH₂Cl)] (6a)

$[(PMe_3)_2RhCl_3(CH_2PMe_3)]$ (6b)

Figure 1. ORTEP drawing of a molecule of (4a). Selected bond distances (Å) and angles (°): Rh(1)-P(2) 2.280(1), Rh(1)-P(4) 2.380(1), Rh(1)-Cl(2) 2.431(1), Rh(1)-C(1) 2.160(3), P(1)-C(1) 1.782(3), P(3)-Rh(1)-C(1) 83.4(1), Rh(1)-C(1)-P(1) 125.2(2).

[‡] There are significant discrepancies between our results and those reported in ref. 6. We defer a detailed discussion of these and additional findings to a subsequent report.

and (3) react with CH_2Cl_2 and report herein the nature of the reaction products.

Brief dissolution of (1) in CH_2Cl_2 followed by precipitation gives the cationic ylide species facwith Et₂O [Rh(PMe₃)₃Cl₂(CH₂PMe₃)]Cl·CH₂Cl₂ (4a) as white microcrystals in quantitative yield. The ¹H and ³¹P n.m.r. spectra§ of (4a) indicate three different PMe₃ environments in a 1:2:1 ratio. The ¹H n.m.r. spectrum indicates a molecule of CH₂Cl₂ of crystallization is present. The resonance due to the ylide CH₂ group is apparently obscured by the PMe₃ resonances. Reaction of (1) with CD₂Cl₂ gives the analogous RhCD₂PMe₃ species (4b) and the ²H n.m.r. spectrum of isolated (4b) in CH_2Cl_2 shows a sharp singlet at δ 5.32 for the CD_2Cl_2 of crystallization and a broad peak of approximately equal integrated intensity at δ 1.6 for RhCD₂PMe₃. The ¹³C{¹H} n.m.r. spectrum of (4a) shows the RhCH₂PMe₃ carbon as a well resolved dddt indicating coupling to ¹⁰³Rh, two distinct, ³¹P nuclei, and two equivalent ³¹P nuclei. An X-ray diffraction

\$ Spectroscopic data for (4a): ¹H n.m.r. (360 MHz, CD_2Cl_2) δ 5.35 (s, 2H, CH_2Cl_2), 2.02 [d, ²*J*(PH) 14 Hz, 9H, PMe_3], 1.73 [d, ²*J*(PH) 10 Hz, 18H, 2PMe_3], 1.58 [d, ²*J*(PH) 9 Hz, 9H, PMe_3]; ³¹P{¹H} n.m.r. (121.69 MHz, CD_2Cl_2 , positive chemical shifts are to high frequency of external 85% H₃PO₄) δ 35.26 [d of quartets, ³*J*(PCPA) 6, ³*J*(PBPA) 4, ²*J*(RhPA) 4 Hz, PA], 7.53 [ddd, *J*(RhPB) 117, ³*J*(PAPB) 4, ²*J*(PCPB) 26 Hz, 2PB], -19.42 p.p.m. [ddt, *J*(RhPc) 78, ³*J*(PAPC) 6, ²*J*(PBPC) 26 Hz, PC]; ¹³C{¹H} n.m.r. (75.59 MHz, CD₂Cl₂) δ 55.51 (s, CH₂Cl₂), 18.60 (m, 2 × PBMe_3), 16.50 [d, *J*(PC) 28 Hz, PMe_3], 15.38 [dd, *J*(PCC) + *J*(RhC) 40, 21 Hz, RhCH₂P].

(4b): ²H N.m.r. (46.14 MHz, CH_2Cl_2 , relative to Me_4Si) δ 5.35 (s, 2D, CD_2Cl_2), 1.70 p.p.m. (br. s, 2D, $RhCD_2P$).

(5a): ¹H N.m.r. (360 MHz, CD_2Cl_2) δ 3.37 [d of quintets, ²J (RhH) 2.3, ³J(PH) 5.6 Hz, 2H, RhCH₂Cl], 2.25 (m, 4H, PCH₂CH₂P), 2.00 (m, 4H, PCH₂CH₂P), 1.76 (br. s, 12H, PMe), 1.71 (br. s, 12H, PMe); ³¹P{¹H} n.m.r. (121.69 MHz, CD_2Cl_2) δ 38.1 p.p.m. [d, J(RhP) 93 Hz]; ¹³C{¹H} n.m.r. (75.59 MHz, CD_2Cl_2) δ 32.60 [d of quintets, J(RhC) 30, ²J(PC) 6 Hz, RhCH₂Cl], 28.05 (apparent quintet, J 13 Hz, CH₂P), 13.13 (apparent quintet, J 9 Hz, PMe), 11.62 (apparent quintet, J 8 Hz, PMe).

(**5b**): ¹H N.m.r. (360 MHz, CD_2Cl_2) δ 3.64 [quintet, ³*J*(PH) 5 Hz, 2H, IrCH₂Cl], 2.2 (m, 4H, PCH₂CH₂P), 1.9 (m, 4H, PCH₂CH₂P), 1.84 (s, 12H, PMe), 1.77 (s, 12H, PMe); ³¹P{¹H} n.m.r. (121.69 MHz, CD_2Cl_2) 7.96 (s).

(**6a**): ¹H N.m.r. (360 MHz, C_6D_6) δ 4.30 [tt, ²J(RhH) = ³J(P^AH) 2.3, ³J(P^BH) 4.4 Hz, 2H, RhCH₂Cl], 1.32 [virtual t, J(PH) 3.5 Hz, 18H, P^BMe₃], 1.19 [d, ²J(PH) 10.2 Hz, 9H, P^Me₃]; ³¹P{¹H} n.m.r. (121.69 MHz, C_6D_6) δ 8.7 [dt, J(RhP) 137, ²J(PP) 28 Hz, P^A], -7.6 p.p.m. [dd, J(RhP) 98, ²J(PP) 28 Hz, 2 \times P^B]; ¹³C n.m.r. (100.16 MHz, C_6D_6) δ 41.39 [td quartet, J(CH) 154, J(RhC) 29, ²J(PC) 6 Hz, RhCH₂Cl], 18.71 [quartet of d, J(CH) 130, J(PC) 34 Hz, P^AMe₃], 15.43 [quartet of virtual t, J(CH) 130, J(PC) 16 Hz, P^BMe₃].

(**6b**): ¹H N.m.r. {360 MHz, [²H₈]tetrahydrofuran (THF)} δ 1.86 [d, ²J(PH) 14 Hz, 9H, PMe₃], 1.49 [overlapping doublets, ²J(PH) 10, ²J(PH) 11 Hz, 18H, 2 × PMe₃], RhCH₂P not observed; ³¹P{¹H} n.m.r. (121.69 MHz, [²H₈]THF) δ 31.5 [approx. dt, ³J(PCPA) \approx ³J(PBPA) 5—7 Hz, ²J(RhP) 9 Hz, PA], 10.7 [ddd, ³J(PAPB) 7, ²J(PCPB) 26, ²J(RhP) 120 Hz, PB] -15.6 p.p.m. [ddd, ³J(PAPC) 5, ²J(PP) 26, J(RhP) 84 Hz, PC].

(7) ¹H N.m.r. (360 MHz, CD_2Cl_2) δ 3.64 [d of quintets, ²*J*(RhH) 2.6, ³*J*(PH) 6.0 Hz, 2H, RhCH₂Cl], 1.70 (br.s, 36 H, 4 × PMe₃); ³¹P{¹H} n.m.r. (121.69 MHz, CD_2Cl_2) δ -8.99 p.p.m. [d, *J*(RhP) 93 Hz].

Figure 2. ORTEP drawing of a unit cell containing two molecules of (5a). Selected bond distances (Å) and angles (°). Rh(1)–P(1) 2.344(1), Rh(1)–C(1) 2.161(2), Rh(1)–Cl(1) 2.445(3), Cl(2)–C(1) 1.754(11); Cl(1)–Rh(1)–C(1) 168.5(3); Rh(1)–C(1)–Cl(2) 119.9(7). CM is the carbon atom of a CH₂Cl₂ solvent molecule.

analysis¶ confirmed the structure shown in Figure 1. In order to inhibit the apparent phosphine migration step, complexes (**2a,b**), incorporating the chelating dmpe ligand, were treated with an excess of CH₂Cl₂. Precipitation with Et₂O gave *trans*-[(dmpe)₂MCl(CH₂Cl)]Cl·CH₂Cl₂ [M = Rh, (**5a**); M = Ir, (**5b**)]§ complexes in high yields and reasonably high purity as evidenced by ¹H, ³¹P{¹H}, and ¹³C{¹H} n.m.r. spectroscopy. The *trans* geometry is demonstrated by the equivalence of all four ³¹P nuclei in the ³¹P{¹H} n.m.r. spectra, the coupling of the MCH₂Cl protons to four equivalent ³¹P nuclei in the ¹H n.m.r. spectra, and the observation of two resonances for the dmpe Me groups in both the ¹H and ¹³C{¹H} n.m.r. spectra. The molecular structure of (**5a**)¶ is shown in Figure 2.

The neutral complex (3) was treated with *ca*. 2.4 equivalents of CH_2Cl_2 in benzene to yield two new complexes (**6a**,**b**). Complex (**6a**), *mer*, *cis*-[(PMe_3)_3RhCl_2(CH_2Cl)], is fairly soluble in benzene and can be isolated by filtration [a mixture of (**6b**) and some (**6a**) is collected at this stage] and vacuum

(5a): RhCl₅P₄C₁₄H₃₆, triclinic, \vec{PI} (No. 2), a = 10.819(2), b = 11.669(1), c = 10.542(3) Å, $\alpha = 91.49(1)$, $\beta = 108.23(2)$, $\gamma = 87.36(1)^\circ$, T = -70 °C, U = 1263 Å³, Z = 2, μ (Mo- K_{α}) = 14.5 cm⁻¹; Enraf-Nonius CAD4, Mo- K_{α} radiation, 6774 data collected using the ω -scan method, $4^\circ \le 2\theta \le 55^\circ$, 3223 unique reflections with $I > 3.0\sigma(I)$ used in solution and refinement; solution by Patterson analysis, refinement by full-matrix least squares, weights $\alpha[\sigma(F^2) + 0.02 F^2]$, 237 parameters, all non-H atoms (except C of RhCH₂Cl group) anisotropic, C of Rh-CH₂Cl group isotropic, H atoms fixed (except H's on RhCH₂Cl and CH₂Cl₂ not included); the two cations are located at centres of symmetry with a disorder occurring between the -Cl and -CH₂Cl ligands which are mutually *trans*. R = 0.047, $R_w = 0.041$.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. removal of solvent. Complex (**6b**) appears to be the ylide species [(PMe₃)₂RhCl₃(CH₂PMe₃)], in which one PMe₃ ligand is *trans* to the ylide moiety and one PMe₃ ligand is *cis* to the ylide. Interestingly, no significant decomposition or rearrangement to (**6b**) occurred when (**6a**) was heated to 60 °C in [²H₈]tetrahydrofuran for 10 days. In addition, preliminary evidence suggests that (**6a**) reacts slowly with an excess of PMe₃ in CH₂Cl₂ via Cl⁻ displacement from Rh rather than RhCH₂Cl and the complex *trans*-[(PMe₃)₄RhCl(CH₂Cl)]Cl (**7**) was observed by *in situ* ¹H and ³¹P{¹H} n.m.r. spectroscopy.§ Finally, it seems unlikely that CH₂PMe₃ ligands are derived from direct reaction of PMe₃ with CH₂Cl₂ as this reaction is quite slow compared with the reactions discussed above.

These results suggest that isomerization of $[(PMe_3)RhCH_2Cl]$ to $[(Cl)RhCH_2PMe_3]$ is promoted by the presence of a PMe₃ ligand *trans* to the chloromethyl group, consistent with a buildup of positive charge on the α -carbon during the phosphine-halide exchange.

We thank B. C. West, M. P. Stepro, M. A. Cushing, L. Lardear, and M. Warrington for skilled technical assistance.

Received, 14th July 1986; Com. 972

References

- (a) H. Werner, W. Paul, R. Feser, R. Zolk, and P. Thometzek, *Chem. Ber.*, 1985, **118**, 261; (b) H. Werner, L. Hofmann, R. Feser, and W. Paul, *J. Organomet. Chem.*, 1985, **281**, 317; (c) H. Werner and W. Paul, *ibid.*, 1982, **236**, C71; H. Werner, L. Hofmann, and W. Paul, *ibid.*, 1982, **236**, C65; H. Werner, R. Feser, W. Paul, and L. Hofmann, *ibid.*, 1981, **291**, C29.
- (a) J. R. Moss and S. Peeling, J. Organomet. Chem., 1982, 236, 221;
 (b) B. Weinberger, G. Tanguy, and H. DesAbbayes, *ibid.*, 1985, 280, C31;
 (c) see also an interesting related study: G. R. Clark, W. R. Roper, and A. H. Wright, *ibid.*, 1984, 273, C17.
 (a) C. E. Sumner, Jr., P. E. Riley, R. E. Davis, and R. Petit, J. Am.
- 3 (a) C. E. Sumner, Jr., P. E. Riley, R. E. Davis, and R. Petit, J. Am. Chem. Soc., 1980, **102**, 1752; (b) K. H. Theopold and R. G. Bergman, *ibid.*, 1983, **105**, 464; (c) Y. C. Lin, J. C. Calabrese, and S. S. Wreford, *ibid.*, 1983, **105**, 1679; (d) M. ElAmane, A. Maisonnat, F. Dahan, R. Prince, and R. Poilblanc, Organometallics, 1985, **4**, 773.
- 4 (a) D. Milstein, Organometallics, 1982, 1, 1549; J. Am. Chem. Soc., 104, 5227; Acc. Chem. Res., 1984, 17, 221; (b) T. Herskovitz, J. Am. Chem. Soc., 1977, 99, 2391; (c) A. D. English and T. Herskovitz, *ibid.*, 1977, 99, 1648; D. M. T. Chan and T. B. Marder, manuscript in preparation; T. B. Marder, D. M. T. Chan, W. C. Fultz, and D. Milstein, Organometallics, submitted for publication; T. B. Marder, D. Zargarian, J. C. Calabrese, T. Herskovitz, and D. Milstein, J. Chem. Soc., Chem. Commun., 1987, 1484; T. B. Marder, D. M. T. Chan, W. C. Fultz, J. C. Calabrese, and D. Milstein, *ibid.*, submitted for publication.
- 5 D. Milstein, J. Chem. Soc., Chem. Commun., 1982, 1357. D. M. T. Chan, T. B. Marder, and D. Milstein, J. Am. Chem. Soc., in the press.
- 6 R. A. Jones, F. Mayor Real, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and K. M. Abdul Malik, J. Chem. Soc., Dalton Trans., 1980, 511.
- 7 S. A. Butler and J. Chatt, J. Chem. Soc. A, 1970, 1411.

Received in revised form, 27th March 1987.

[¶] *Crystal data* for (**4a**): RhCl₅P₄C₁₄H₄₀, monoclinic-*b*, $P_{21/c}$ (No. 14), a = 9.965(2), b = 12.293(2), c = 22.799(4) Å, $\beta = 94.45(2)^{\circ}, T =$ $-75 \,^{\circ}$ C, U = 2784.4 Å³, Z = 4, μ (Mo- K_{α}) = 13.16 cm⁻¹; Enraf-Nonius CAD4, Mo- K_{α} radiation, 8640 data collected using the ω -scan method, $1.8^{\circ} \le 2\theta \le 60.0^{\circ}$, 5566 unique reflections with $I \ge$ $3.0\sigma(I)$ used in solution and refinement; solution by direct methods (MULTAN), refinement by full-matrix least squares, weights $\alpha[\sigma^2(I) + 0.0009I^2]^{-1/2}$, 225 parameters, all non-H atoms anisotropic, H atoms calculated [except for H's on C(1) located on a difference map and refined isotropically]; $R = 0.036, R_w = 0.041$.